wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a , b and c are real numbers, and , Show that either a + b + c = 0 or a = b = c .

Open in App
Solution

Three real numbers are a, b and c.

It is given that the determinant is 0.

Δ=| b+c c+a a+b c+a a+b b+c a+b b+c c+a | =0

This means that either a+b+c=0 or a=b=c.

Apply row operation R 1 R 1 +R 2 +R 3 on the above determinant.

Here, R 1 is the first row, R 2 is the second row and R 3 is the third row.

Δ=| b+c+c+a+a+b c+a+a+b+b+c a+b+b+c+c+a c+a a+b b+c a+b b+c c+a | =| 2( a+b+c ) 2( a+b+c ) 2( a+b+c ) c+a a+b b+c a+b b+c c+a |

Apply column operation C 2 C 2 C 1 on the above determinant.

=2( a+b+c )| 1 11 1 c+a a+bca b+c a+b b+cab c+a | =2( a+b+c )| 1 0 1 c+a bc b+c a+b ca c+a |

Apply column operation C 3 C 3 C 1 on the above determinant.

=2( a+b+c )| 1 0 11 c+a bc b+cca a+b ca c+aab | =2( a+b+c )| 1 0 0 c+a bc ba a+b ca cb |

The determinant has to be expanded along R 1 as,

=2( a+b+c )( 1| bc ba ca cb |0| c+a ba a+b cb |+0| c+a bc a+b ca | ) =2( a+b+c )( 1| bc ba ca cb |0+0 ) =2( a+b+c )( ( cb )( bc )( ba )( ca ) )

Further simplify the above equation.

Δ=2( a+b+c )( ( a 2 + b 2 + c 2 )+ab+bc+ac )

The determinant value is given as 0.

Substitute the value of determinant in the above equation.

2( a+b+c )( ( a 2 + b 2 + c 2 )+ab+bc+ac )=0

From the above equation, two parts can be written as,

2( a+b+c )=0 and ( a 2 + b 2 + c 2 )+ab+bc+ac=0

The first part can be written as ( a+b+c )=0.

Further simplify the second part.

( a 2 + b 2 + c 2 )abbcac=0 ( 2 2 )( ( a 2 + b 2 + c 2 )abbcac )=0 ( ( 2 a 2 +2 b 2 +2 c 2 )2ab2bc2ac )=0 ( a 2 + b 2 + c 2 + a 2 + b 2 + c 2 2ab2bc2ac )=0

( ab ) 2 + ( bc ) 2 + ( ca ) 2 =0 ab=0,bc=0,ca=0 a=b,b=c,c=a a=b=c

Hence, from the first and second parts, it can be concluded that either ( a+b+c )=0 or a=b=c.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon