If a,b and c are sides of a triangle, then [a+b+c]2[ab+bc+ca]always belongs to
[1,2]
[2,3]
[3,4]
[1,3]
Explanation for the correct option:
Step 1. Using A.M.≥G.M., we get
a2+b22≥ab,b2+c22≥bcand c2+a22≥ca
⇒a2+b2≥2ab,b2+c2≥2bcand c2+a2≥2ca
⇒ a2+b2+c2≥ab+bc+ ca
⇒ a+b+ c2≥3ab+bc+ca
⇒a+b+ c2ab+bc+ca≥3
Step 2. Since a,b and c are sides of a triangle, we get
a-b≤c,b-c≤a and c-a≤b
⇒a2+b2-2ab≤c2,b2+c2-2bc≤a2 and c2+ a2-2ca≤b2
⇒ a2+b2+c2≤2ab+bc+ca
⇒ a+b+ c2≤4ab+bc+ca
⇒a+b+ c2ab+bc+ca≤4
∴(a+b+ c)2ab+bc+ca∈[3,4]
Hence, option ‘C’ is correct.