wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A, B and C are the angles of a triangle and ∣ ∣1111+sinA1+sinB1+sinCsinA+sin2AsinB+sin2BsinC+sin2C∣ ∣=0, which of the following can be an answer?

A
B=A
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
A2=BC
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
C=A
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
C=B
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct options are
A B=A
B A2=BC
C C=B
D C=A
Let Δ=∣ ∣1111+sinA1+sinB1+sinCsinA+sin2AsinB+sin2BsinC+sin2C∣ ∣
Applying C2C2C1 and C3C3C1
Δ=∣ ∣ ∣1001+sinAsinBsinAsinCsinAsinA+sin2A(sinBsinA)(sinB+sinA+1)(sinCsinA)(sinC+sinA+1)∣ ∣ ∣
Expanding along R1
Δ=sinBsinAsinCsinA(sinBsinA)(sinB+sinA+1)(sinCsinA)(sinC+sinA+1)
=(sinBsinA)(sinCsinA)11sinB+sinA+1sinC+sinA+1
=(sinBsinA)(sinCsinA)(sinCsinB)
But given Δ=0
(sinBsinA)(sinCsinA)(sinCsinB)=0
sinBsinA=0 or sinCsinA=0 or sinCsinB=0
sinB=sinA or sinC=sinA or sinC=sinB
B=A or C=A or C=B

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Applications
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon