wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A,B and C are the interior angles of a triangle ABC, Prove that:

cosB+C2cosC+A2cosA+B2sinA2sinB2sinC2=1

Open in App
Solution

In ΔABC,
A+B+C=180o ...Angle sum property of triangle

A+B+C2=180o2

A+B+C2=90o

A+B2=90oC2

Similarly, B+C2=90oA2 and A+C2=90oB2


L.H.S =cosB+C2cosC+A2cosA+B2sinA2sinB2sinC2

=cos[90oA2]cos[90oB2]cos[90oC2]sinA2sinB2sinC2

=sinA2sinB2sinC2sinA2sinB2sinC2 ....[cos(90θ)=sinθ]

=1
= R.H.S

Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon