If a, b and c are three positive real numbers, which one of the following are true?
a2+b2+c2≥bc+ca+ab
a3+b3+c3≥3abc
(b+c)(c+a)(a+b)≥8abc
bca+cab+abc≥a+b+c
We have
a2+b22≥√a2b2=ab,b2+c22≥√b2c2=bc and c2+a22≥√c2a2=ca
Adding these inequalities, we get
a2+b2+c2≥bc+ca+abAlso a3+b3+c33≥(a3b3c3)1/3⇒a3+b3+c3≥3abc
Next, since (b+c)/2≥√bc, (c+a)/2≥√ca and (a+b)/2≥√ab, we get(b+c2)(c+a2)(a+b2)≥√a2b2c2⇒(b+c)(c+a)(a+b)≥8abcLastly, we have12(bca+cab)≥√bca.cab=c,12(cab+abc)≥√cab.abc=b,and 12(abc+bca)≥√abc.bca=b
Adding the above inequalities we get
bca+cab+abc≥a+b+c