If A,B and Care three sets such that A∩B=A∩Cand A∪B=A∪C, then
A=C
B=C
A∩B=ϕ
A=B
Finding the value:
Given that A∪B=A∪C
⇒(A∪B)∩C=(A∪C)∩C⇒(A∩C)∪(B∩C)=C[(A∪C)∩C=C]⇒(A∩B)U(B∩C)=C……….(1)[(A∩C)=A∩B]
Take A∪B=A∪C
⇒(A∪B)∩B=(A∪C)∩B⇒B=(A∩B)∪(C∩B)⇒(A∩B)∪(B∩C)=B………..(2)
From equations 1 & 2, we get
Therefore, B=C
Hence the correct option is B.
If A, B, C are three sets such that A⊂B, then prove that C−B⊂C−A