The correct options are
A p=r
B p=1√1+2cosθ,q=2cosθ√1+2cosθ
C r=1√1+2cosθ
We are given that
a×b+b×c=pa+qb+rc....(1)
Taking dot product with a we have
[abc]=pa⋅a+qa⋅b+ra⋅c
=p+qcosθ+rcosθ.....(2)
since a⋅a=|a|2=1,a⋅b=|a||b|cosθ and
a⋅c=cosθ.
Similarly, taking dot product with b and c we get
0=pcosθ+q+rcosθ(3)
and [abc]=pcosθ+qcosθ+r(4)
Therefore, from (2),(4) we get p=r
Adding (2),(3) and (4) and we get
2[abc]=(2cosθ+1)(p+q+r)
⇒2[abc]2cosθ+1=p+q+r(5)
Mnltiplying (5) by cosθand subtracting from (2) we get
[abc]−2cosθ[abc]2cosθ+1=p(1−cosθ)
⇒−[abc](2cosθ+1)(1−cosθ)=p
Similarly, q=−2[abc]cosθ(2cosθ+1)(1−cosθ)
Now,
[abc]2=∣∣
∣∣a⋅aa⋅ba⋅cb⋅ab⋅bb⋅cc⋅ac⋅bc⋅c∣∣
∣∣
=∣∣
∣∣1cosθcosθcosθ1cosθcosθcosθ1∣∣
∣∣ =(1+2cosθ)∣∣
∣∣111cosθ1cosθcosθcosθ1∣∣
∣∣
=(1+2cosθ)∣∣
∣∣100cosθ1−cosθ0cosθ01−cosθ∣∣
∣∣
=(1+2cosθ)(1−cosθ)2
⇒[abc]=(√1+2cosθ)(1−cosθ) ( since θ is acute, 0<cosθ<1)
Hence p=r=1√1+2cosθ,q=−2cosθ√1+2cosθ