wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a,b and c be non-coplanar unit vectors equally inclined to one another at an acute angle θ. If a×b+b×c=pa+qb+rc, then

A
p=r
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
p=11+2cosθ,q=2cosθ1+2cosθ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
r=11+2cosθ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
p=2cosθ1+2cosθ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
A p=r
B p=11+2cosθ,q=2cosθ1+2cosθ
C r=11+2cosθ
We are given that
a×b+b×c=pa+qb+rc....(1)
Taking dot product with a we have
[abc]=paa+qab+rac
=p+qcosθ+rcosθ.....(2)
since aa=|a|2=1,ab=|a||b|cosθ and
ac=cosθ.
Similarly, taking dot product with b and c we get
0=pcosθ+q+rcosθ(3)
and [abc]=pcosθ+qcosθ+r(4)
Therefore, from (2),(4) we get p=r
Adding (2),(3) and (4) and we get
2[abc]=(2cosθ+1)(p+q+r)
2[abc]2cosθ+1=p+q+r(5)
Mnltiplying (5) by cosθand subtracting from (2) we get
[abc]2cosθ[abc]2cosθ+1=p(1cosθ)
[abc](2cosθ+1)(1cosθ)=p
Similarly, q=2[abc]cosθ(2cosθ+1)(1cosθ)
Now,
[abc]2=∣ ∣aaabacbabbbccacbcc∣ ∣
=∣ ∣1cosθcosθcosθ1cosθcosθcosθ1∣ ∣ =(1+2cosθ)∣ ∣111cosθ1cosθcosθcosθ1∣ ∣
=(1+2cosθ)∣ ∣100cosθ1cosθ0cosθ01cosθ∣ ∣
=(1+2cosθ)(1cosθ)2
[abc]=(1+2cosθ)(1cosθ) ( since θ is acute, 0<cosθ<1)
Hence p=r=11+2cosθ,q=2cosθ1+2cosθ

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Applications of Cross Product
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon