(a + b ) < 2 (a + b )
∴ p(1) holds goods
Assume p (m) i. e.
(a+b)m<2m(am+bm)
We have to prove p( m + 1)
i. e. (a+b)m+1<2m+1(am+1+bm+1)
now (a+b)m+1=(a+b)m+(a+b)
<2m(am+bm)(a+b)
=[am+1+bm+1+ambbma]
<2m[am+1+bm+1am+1+bm+1]
as shown below in
=2m[am+1+bm+1]
now amb+bma<am+1+bm+1
or am(b−a)+bm(a−b)<0
or (am−bm)(b−a)>0
or (am−bm)(a−b)>0
above is true because when a and b are both +ive then either a < b or a > b
When a < b am−bm < o , a - b < 0
∴ (b) holds
When a > b i. e.
am−bm < o , a - b < 0
∴ (b) holds
∴ p ( m + 1) holds goods hence universally true