The correct option is
A 16a2Let coordinates of point A are
A(r1cosθ,r1sinθ)
Thus, coordinates of point B will be B(r2cos(90−θ),r2sin(90−θ))
=B(r2sinθ,r2cosθ)
Now, equation of parabola is y2=4ax
Point A lies on the parabola. Thus it must satisfy the equation of parabola.
∴(r1sinθ)2=4a(r1cosθ)
∴r21sin2θ=4ar1cosθ
∴r1sin2θ=4acosθ (1)
Squaring both sides, we get,
∴r12sin4θ=16a2cos2θ (2)
Point B also lies on the parabola. Thus it must satisfy the equation of parabola.
∴(r2cosθ)2=4a(r2sinθ)
∴r22cos2θ=4ar2sinθ
∴r2cos2θ=4asinθ (3)
∴cos2θ=4asinθr2
Putting this value in equation (1), we get,
r12sin4θ=16a2×4asinθr2
r12sin3θ=64a3r2
sin3θ=64a3r12r2
∴(sin3θ)2/3=(64a3r12r2)2/3
∴sin2θ=16a2r14/3r22/3 (4)
Taking ratio of equations (1) and (3), we get,
r1sin2θr2cos2θ=4acosθ4asinθ
∴r1sin2θ×4asinθ=r2cos2θ×4acosθ
∴r1sin3θ=r2cos3θ
∴cos3θ=r1r2sin3θ
∴cos3θ=r1r264a3r12r2
∴cos3θ=64a3r1r22
∴(cos3θ)2/3=(64a3r1r22)2/3
∴cos2θ=16a2r12/3r24/3 (5)
Adding equations (4) and (5), we get,
sin2θ+cos2θ=16a2r14/3r22/3+16a2r12/3r24/3
∴1=16a2[1r14/3r22/3+1r12/3r24/3]
∴1=16a2r12/3r22/3[1r12/3+1r22/3]
∴1=16a2r12/3r22/3[r12/3+r22/3r12/3r22/3]
∴1=16a2r14/3r24/3[r12/3+r22/3]
∴r14/3r24/3r12/3+r22/3=16a2