If a,b are positive numbers such that x=1+a+a2+.....∞(a<1);y=1+b+b2....∞(b<1);then 1+ab+a2b2+....∞=
x=1+a+a2+...∞(a<1) y=1+b+b2+...∞(b<1) Then the value of 1+ab+a2b2+.....∞ is [MNR 1980; MP PET 1985]
If X=1+a+a2+....∞, where |a| < 1 and y=1+b+b2+.....∞ where |b| <1,
prove that 1+ab+a2b2+.....∞xyx+y−1