The verities of the triangle are A(−36,7), B(20,7) and C(0,−8)
a=BC=√(0−20)2+(−8−7)2=√(−20)2+(−15)2
BC=√400+225=√625
BC=25
b=CA=√(36−0)2+(7−(−8))2
=√362+152
=√1296+225=√1521
CA=39
c=AB=√(20−(−36))2+(7−7)2
c=AB=√512+02
AB=56
Incenter I of the triangle is
[(ax1+bx2+cx3)/(a+b+c),(4y1+by2+cy3)/(a+b+c)]
x1=−36, y1=7,x2=20, y2=7, x3=0, y3=8
[25(−36)+39(20)+56(0)25+39+56,25(7)+39(7)+56(−8)25+39+56]
=[(−120)120,448−448120]=(−1,0)
so, the incentre is (−1,0)
Comparing with (a,b)
We get, a=−1,b=0
a+b=−1+0=−1