If α, β are the roots of the equation ax2+bx+c=0, then αaβ+b+βaα+b=
α + β = - ba, αβ = ca
and α2+β2=(b2−2ac)a2
Now ααβ+b+βaα+b=α(aα+b)+β(aβ+b)(aβ+b)(aα+b)
=a(α2+β2)+b(α+β)αβa2+ab(α+β)+b2=a(b2−2ac)a2+b(−ba)(ca)a2+ab(−ba)+b2
=b2−ac−b2a2c−ab2+ab2=−2aca2c=−2a