If (a - b), (b - c), (c - a) are in G.P. then prove that (a+b+c)2=3(ab+bc+ca)
(a−b),(b−c),(c−a) are in G.P. (b+c)2=(a−b)(c−a)
b2+c2−2bc=ac−a2−bc+ab
b2+c2+a2=ac+bc+ab.....(i)
Now,
(a+b+c)2=a2+b2+c2+2ab+2bc+2ca
=ac+bc+ab+2ab+2bc+2ca
Using equation (i)
=3ab+3bc+3ca
(a+b+c)2=3(ab+bc+ca)