⇒(1+ax)(1+bx)(1+cx)=1+px+qx2+rx3
p=a+b+c=0
q=∑ab
r=abc
Taking the logarithms and equating the co efficients of xn we have (−1)nn(an+bn+cn)
=co efficient of xn in the expansion of log(1+qx2+rx3)
=co efficient of xn in (qx2+rx3)
−12(qx2+rx3)2
+13(qx2+rx3)3+.....
Putting, n=2,3,4,5,6,7
−a2+b2+c22=q,a3+b3+c33=r,
−a4+b4+c44=−q22,a5+b5+c55=−qr,
−a6+b6+c66=−r22+q33,a7+b7+c77=q2r,
LHS;-
a6+b6+c6=3r2−2q3
RHS;-
3a2b2c2−2(bc+ab+ca)3=3r2−2q3