wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a+b+c=0, prove that identities (b2c+c2a+a2b3abc)(bc2+ca2+ab23abc)=(bc+ca+ab)3+27a2b2c2.

Open in App
Solution

(b2c+c2a+a2b3abc)(bc2+ca2+ab23abc)
=(b2c+c2a+a2b)(bc2+ca2+ab2)3abca2b+9a2b2c21

Now, (b2c+c2a+a2b)(bc2+ca2+ab2)=b3c3+c3a3+a3b3+abc(a3+b3+c3)+3a2b2c2
={(bc+ca+ab)33abca2b6a2b2c2}+abc(a3+b3+c3)+3a2b2c2

Hence from 1 the given expression,
=(bc+ca+ab)36abca2b+6a2b2c2+abc(a3+b3+c3)

But a2b=(a+b+c)(a2+b2+c2)3abc
=3abca+b+c=0
Also, a3+b3+c3=3abc

Hence the expression,
=(bc+ca+ab)3+18a2b2c2+6a2b2c2+3a2b2c2
=(bc+ca+ab)3+27a2b2c2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Factor of Polynomials
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon