Assuming that a,bandc are roots of a cubic equation, we can write
(x−a)(x−b)(x−c)=0orx3−(a+b+c)x2+(ab+bc+ca)x−abc=0
⟹x3+(ab+bc+ca)x−abc=0[∵a+b+c=0]
Also, as a,b,c are the roots, they will satisfy the cubic equation. Hence,
a3+(ab+bc+ca)a−abc=0…………………(1)
b3+(ab+bc+ca)b−abc=0…………………(2)
c3+(ab+bc+ca)c−abc=0…………………(3)
Adding the above equations, we get a3+b3+c3=3abc[∵a+b+c=0]
Also, (a2+b2+c2)=(a+b+c)2−2(ab+bc+ca)=−2(ab+bc+ca)
Multiplying equation (1), (2), (3) with a2,b2,c2 respectively and adding them, we get
(a5+b5+c5)+(ab+bc+ca)(a3+b3+c3)−abc(a2+b2+c2)=0
Substituting value of (a2+b2+c2) and (a3+b3+c3) from earlier, the above equation becomes
(a5+b5+c5)+(ab+bc+ca)(3abc)+(2abc)(ab+bc+ca)=0
⟹a5+b5+c5=−5abc(ab+bc+ca)