We have identically
(1+ax)(1+bx)(1+cx)=1+px+qx2+rx3,
where p=a+b+c, q=bc+ca+ab, r=abc.
Hence, using the condition given,
(1+ax)(1+bx)(1+cx)=1+qx2+rx3.
Taking logarithms and equating the coefficients of xn, we have (−1)n−1n(an+bn+cn)= coefficient of xn in the expansion of log(1+qx2+rx3)= coefficient of xn in (qx2+rx3)−12(qx2+rx3)2+13(qx2+rx3)3−⋯
By putting n=2,3,5 we obtain
−a2+b2+c22=q, a3+b3+c33=r, a5+b5+c55=−qr;
whence a5+b5+c55=a3+b3+c33⋅a2+b2+c22,
and the required result at once follows.
If a=β−γ,b=γ−α,c=α−β, the given condition is satisfied; hence we have identically for all values of α,β,γ
6{(β−γ)5+(γ−α)5+(α−β)5}=5{(β−γ)3+(γ−α)3+(α−β)3}{(β−γ)2+(γ−α)2+(α−β)2}
that is,
6{(β−γ)5+(γ−α)5+(α−β)5}=5(β−γ)(γ−α)(α−β)(α2+β2+γ2−βγ−γα−αβ);
6(a5+b5+c5)=5(a3+b3+c3)(a2+b2+c2)
Hence proved.