Given, ∣∣
∣∣1cosCcosBcosC1cosAcosBcosA1∣∣
∣∣
=1(1−cos2A)−cosC(cosC−cosA⋅cosB)+cosB(cosC⋅cosA−cosB) =sin2A−cos2C+cosA⋅cosB⋅cosC+cosA⋅cosB⋅cosC−cos2B=sin2A−cos2B+2cosA⋅cosB⋅cosC−cos2C=−cos(A+B)⋅cos(A−B)+2cosA⋅cosB⋅cosC−cos2C[∵cos2B−sin2A=cos(A+B)⋅cos(A−B)]=−cos(−C)⋅cos(A−B)+cosC(2cosA⋅cosB−cosC)=−cosC(cosA⋅cosB+sinA⋅sinB−2cosA⋅cosB+cosC)=cosC(cosA⋅cosB−sinA⋅sinB−cosC)=cosC[cos(A+B)−cosC] =cosC(cosC−cosC){∵cosC=cos(A+B)}=0