wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A+B+C=0, then value of ∣ ∣1cosCcosBcosC1cosAcosBcosA1∣ ∣ is

Open in App
Solution

Given, ∣ ∣1cosCcosBcosC1cosAcosBcosA1∣ ∣
=1(1cos2A)cosC(cosCcosAcosB)+cosB(cosCcosAcosB) =sin2Acos2C+cosAcosBcosC+cosAcosBcosCcos2B=sin2Acos2B+2cosAcosBcosCcos2C=cos(A+B)cos(AB)+2cosAcosBcosCcos2C[cos2Bsin2A=cos(A+B)cos(AB)]=cos(C)cos(AB)+cosC(2cosAcosBcosC)=cosC(cosAcosB+sinAsinB2cosAcosB+cosC)=cosC(cosAcosBsinAsinBcosC)=cosC[cos(A+B)cosC] =cosC(cosCcosC){cosC=cos(A+B)}=0

flag
Suggest Corrections
thumbs-up
15
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon