If a+b+c=10 and a2+b2=58,find the value of a3+b3
Given:a+b=10a2+b2=58Since, (a+b)2=a2+b2+2ab 102=58+2ab100 = 58 + 2ab42 = 2abab = 21
And also (a+b)3=a3+b3+3ab(a+b)
103=a3+b3+3ab(a+b)
1000=a3+b3+3×21(10)
1000=a3+b3+630
∴a3+b3=370
If a+b+c =9 and a² + b²+ c²=35 find the value of a³ + b³ + c³ - 3ab
If a + b = 12 and a2 + b2 = 60, the value of a3 + b3 is: