If a+b+c=11 and ab+bc+ac=32 find a2+b2+c2
57
67
89
45
Given (a+b+c)=11 and (ab+bc+ca)=32 ⇒(a+b+c)2=112 ⇒a2+b2+c2+2(ab+bc+ca)=121 ⇒a2+b2+c2+2(32)=121 ⇒a2+b2+c2+64=121 ⇒a2+b2+c2=121−64=57
If a + b + c = 11 and a2+b2+c2=81, find ; ab+bc+ca.
In the adjoining figure, if BC=a, AC=b, AB=c and ∠CAB=120∘, then the correct relation is
In the adjoining figure, if BC = a, AC = b, AB = c and ∠CAB=120∘, then the correct relation is-