Given that,
a+b+c=12
a2+b2+c2=90
Then we know that,
(a+b+c)2=a2+b2+c2+2ab+2bc+2ca
(a+b+c)2=a2+b2+c2+2(ab+bc+ca)
122−90=2(ab+bc+ca)
2(ab+bc+ca)=144−90=54
(ab+bc+ca)=27
Now, we know that,
a3+b3+c3−3abc
=(a+b+c)(a2+b2+c2−ab+bc+ca)
=12×(90−27)
=12×63
=756
Hence, this is the answer.