wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

If a+b+c=15 and a2+b2+c2=83 then find the value of a3+b3+c33abc

Open in App
Solution

Given: a+b+c=15 and a2+b2+c2=83

Now, consider, a+b+c=15. On squaring both the sides, we get,

(a+b+c)2=152

a2+b2+c2+2(ab+bc+ac)=225 [(x+y+z)2=x2+y2+z2+2(xy+yz+zx)]

2(ab+bc+ca)=22583 [a2+b2+c2=83 ]

ab+bc+ca=1422=71

Now, we know that x3+y3+z33xyz=(x+y+z)[x2+y2+z2(xy+yz+xz)]

a3+b3+c33abc=(a+b+c)[a2+b2+c2(ab+bc+ca)]

a3+b3+c33abc=(15)[83(71)]

a3+b3+c33abc=15×12

a3+b3+c33abc=180

Hence, a3+b3+c33abc=180.


flag
Suggest Corrections
thumbs-up
579
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
x^2 - y^2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon