If a+b+c=15 and a2+b2+c2=83 then find the value of a3+b3+c3−3abc
Given: a+b+c=15 and a2+b2+c2=83
Now, consider, a+b+c=15. On squaring both the sides, we get,
⇒(a+b+c)2=152
⇒a2+b2+c2+2(ab+bc+ac)=225 [∵(x+y+z)2=x2+y2+z2+2(xy+yz+zx)]
⇒2(ab+bc+ca)=225−83 [∵a2+b2+c2=83 ]
⇒ab+bc+ca=1422=71
Now, we know that x3+y3+z3−3xyz=(x+y+z)[x2+y2+z2−(xy+yz+xz)]
∴a3+b3+c3−3abc=(a+b+c)[a2+b2+c2−(ab+bc+ca)]
∴a3+b3+c3−3abc=(15)[83−(71)]
⇒a3+b3+c3−3abc=15×12
⇒a3+b3+c3−3abc=180
Hence, a3+b3+c3−3abc=180.