⇒ L.H.S=cos2A+cos2B−cos2C
=cos2A−2sin(2B+2C2)sin(2B−2C2)
=cos2A−2sin(B+C)sin(B−C)
=cos2A−2sin(180o−A)sin(B−C) [ B+C=180o−A ]
=cos2A−2(sin180ocosA−sinAcos180o)sin(B−C)
=cos2A+2sinAsin(B−C)
=1−2sin2A+2sinAsin(B−C)
=1−2sinA[sinA−sin(B−C)]
=1−2sinA[2cos(A+B−C2)sin(A−B+C2)]
=1−4sinAcos(A+B−C2).sin(A−B+C2)
=1−4sinAcos(180o−C−C2).sin(180o−B−B2) [ AB=180o−C and A+C=180o−B ]
=1−4sinA.cos(−2C2)sin(−2B2)
=1−4sinAcos(−C).sin(−B)
=1−4sinAsinBsinC
∴ cos2A+cos2B−cos2C=1−4sinAsinBsinC ---- Hence proved
(ii) sinA−sinB+sinC=4sinA2cosB2sinC2
⇒ L.H.S=sinA−sinB+sinC
=2cos(A+B2)sin(A−B2)+sinC
=2sinC2sin(A−B2)+2sinC2cosC2 [cos(A+B2)=sinC2]
=2sinC2[sin(A−B2)+cosC2]
=2sinC2[sin(A−B2)+sin(A+B2)] [sin(A+B2)=cosC2]
=4sinA2cosB2sinC2
∴ sinA−sinB+sinC=4sinA2cosB2sinC2