wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A+B+C=1800, then


(i)cos2A+cos2Bcos2C=14sinAsinBsinC

(ii)sinAsinB+sinC=4sinA2cosB2sinC2

A
True
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
False
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A True
(i) cos2A+cos2Bcos2C=14sinAsinBsinC

L.H.S=cos2A+cos2Bcos2C

=cos2A2sin(2B+2C2)sin(2B2C2)

=cos2A2sin(B+C)sin(BC)
=cos2A2sin(180oA)sin(BC) [ B+C=180oA ]

=cos2A2(sin180ocosAsinAcos180o)sin(BC)

=cos2A+2sinAsin(BC)

=12sin2A+2sinAsin(BC)

=12sinA[sinAsin(BC)]

=12sinA[2cos(A+BC2)sin(AB+C2)]

=14sinAcos(A+BC2).sin(AB+C2)

=14sinAcos(180oCC2).sin(180oBB2) [ AB=180oC and A+C=180oB ]

=14sinA.cos(2C2)sin(2B2)

=14sinAcos(C).sin(B)

=14sinAsinBsinC

cos2A+cos2Bcos2C=14sinAsinBsinC ---- Hence proved

(ii) sinAsinB+sinC=4sinA2cosB2sinC2

L.H.S=sinAsinB+sinC

=2cos(A+B2)sin(AB2)+sinC
=2sinC2sin(AB2)+2sinC2cosC2 [cos(A+B2)=sinC2]

=2sinC2[sin(AB2)+cosC2]

=2sinC2[sin(AB2)+sin(A+B2)] [sin(A+B2)=cosC2]

=4sinA2cosB2sinC2

sinAsinB+sinC=4sinA2cosB2sinC2



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon