wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A+B+C=1800, then
sin2A+sin2B+sin2C=4sinAsinBsinC

Open in App
Solution

Given:
A+B+C=π
To Prove:
sin2A+sin2B+sin2C=4sinAsinBsinC

We have that:
A+B=πC
sin(A+B)=sin(πC)=sinC
sin2A+sin2B=2sin(A+B)cos(AB)
sin2A+sin2B=2sinCcos(AB) (1)

cos(A+B)=cos(πC)=cosC
sin2C=2sinCcosC
sin2C=2sinCcos(A+B) (2)

Adding (1) and 2):
sin2A+sin2B+sin2C=2sinC[cos(AB)cos(A+B)]
sin2A+sin2B+sin2C=2sinC[cosAcosB+sinAsinB(cosAcosBsinAsinB)]
sin2A+sin2B+sin2C=2sinC[2sinAsinB]
sin2A+sin2B+sin2C=4sinAsinBsinC
Hence proved


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon