If A+B+C=180°, ∑tanA2tanB2 is
0
1
2
3
4
Explanation for correct option:
Given,A+B+C=180°
Now,
A+B+C=180°A2+B2+C2=90°A2+B2=90°-C2Taking"tan"bothsidetanA2+B2=tan90°-C2tanA2+tanB21–tanA2tanB2=cotC2tanA2+tanB21–tanA2tanB2=1tanC2tanA2+tanB2×tanC2=1–tanA2tanB2tanA2tanC2+tanB2tanC2+tanA2tanB2=1
Thus, ∑tanA2tanB2=1
Hence, correct option is (B)
If A+B +C =180∘, then ∑tanA2tanB2 is equal
Sum of interior angles of a polygon of (n+1) sides =
If A + B + C = 180∘, then sin (B + 2C) + sin (C + 2A) + sin (A + 2B)