We have
A+B+C=180o …… (1)
Prove that:-
(1).sin2A+sin2B−sin2C=2sinAsinBcosC
(2).sin2A+sin2B−sin2C=2(1+cosAcosBcosC)
Proof:-
Part (1).. L.H.S.
sin2A+sin2B−sin2C
=(1−cos2A2)+(1−cos2A2)−(1−cos2C)∴cos2θ=1−2sin2θ
=1−12(cos2A+cos2B)+cos2C−1
=−12(cos2A+cos2B)+cos2C∴cosC+cosD=2cosC+D2cosC−D2
=−12(2cos(2A+2B2)cos(2A−2B2))+cos2C
=−[cos(A+B)cos(A−B)]+cos2C
=−[cos(180o−C)cos(A−B)]+cos2C∴cos(180o−θ)=−cosθ
=−[−cosCcos(A−B)]+cos2C
=cosCcos(A−B)+cos2C
=cosC[cos(A−B)+cosC]
=cosC[cos(A−B)+cos(180o−(A+B))]∴cos(180o−θ)=−cosθ
=cosC[cos(A−B)−cos(A+B)]
=cosC(2sinAsinB)∴2sinAsinB=cos(A−B)−cos(A+B)
=2sinAsinBcosC
R.H.S.
Hence proved.
Part (2).
L.H.S.
sin2A+sin2B+sin2C
=1−cos2A+sin2B+sin2C
=1−(cos2A−sin2B)+(1−cos2C)
=2−(cos(A+B)cos(A−B))−cos2C
=2−(cos[π−C]cos(A−B))−cos2C
=2−(−cosCcos(A−B))−cos2C
=2+cosCcos(A−B)−cos2C
=2+cosC(cos(A−B)−cosC)
=2+cosC(cos(A−B)−cosC)
=2+cosC(cos(A−B)−cos[180o−(A+B)])
=2+cosC(cos(A−B)−cos(A+B))
=2+cosC(2cosAcosB)
=2+2cosAcosBcosC
=2(1+cosAcosBcosC)
R.H.S.
Hence proved.