wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A+B+C=180, Prove that sin2A+sin2B+sin2c=2+2cosA.cosB.cosc

Open in App
Solution

Consider the problem,

sin2A+sin2B+sin2c=2+2cosA.cosB.cosc

We can write sin2A as,

sin2A=1cos(2A)2

Therefore,

LHS=1cos(2A)2+1cos(2B)2+1cos(2C)2=32(cos(2A)+cos(2B)+cos(2C))=12(3(2cos(A+B)cos(AB)+cos(2C)))C=180(A+B)cos(C)=cos(180(A+B))cos(C)=cos(A+B)

Therefore,

=32(2cos(C)cos(AB)+cos(2C))cos(2C)=2cos2(C)1

And,

=12(3(2cosC)cos(AB)+2cos2(C)1)=12(4(2cos(C)cos(C)cos(AB)))=12(42cos(C)(cos(A+B)cos(AB)))=12(4+2cos(C)(cos(A+B)cos(AB)))=12(4+2cos(C)×2cos(A)cos(B))=2+2cos(A)cos(B)cos(C)

Therefore, If A+B+C=180, sin2A+sin2B+sin2c=2+2cosA.cosB.cosc



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon