wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A + B + C = 180°, then
sec A (cos B cos C − sin B sin C) is equal to

(a) 0
(b) −1
(c) 1
(d) None of these

Open in App
Solution

(b) −1

secAcosBcosC-sinBsinC=cosBcosπ-A+B-sinBsinπ-A+BcosA

We know that, cosπ-θ=-cosθ and sinπ-θ=sinθ,

secAcosBcosC-sinBsinC=cosBcosA+B-sinBsinA+BcosA

Now, using the identities cosA+B=cosAcosB-sinAsinB and sinA+B=sinAcosB+cosAsinB, we get

secAcosBcosC-sinBsinC=-cosAcosB2+cosBsinAsinB-sinBsinAcosB-sin2BcosAcosA

secAcosBcosC-sinBsinC=-cosAcos2B+sin2BcosAsecAcosBcosC-sinBsinC=-cosAcosA=-1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon