If A+B+C=180° , then prove that sinA+sinB+sinC = 4 cos(A/2) cos(B/2) cos(C/2)
We'll choose to work on the left side of the identity and to transform the addition between the 2 terms into a product.
sin a + sin b = 2 sin (a+b)/2*cos(a-b)/2
We'll write sin c= sin (c/2 + c/2)=2sin(c/2)*cos(c/2)
We'll work on the constraint given by the enunciation;
a+b+c=pi
a+b=pi-c
sin (a+b)/2=sin(pi/2 - c/2)=cos c/2
We'll substitute the calculated values, to the left side of the identity.
sin a+sin b+sin c=2sin(a+b)/2*cos(a-b)/2+2sin(c/2)*cos(c/2)
sin a+sin b+sin c=2cos c/2*cos(a-b)/2+2sin(c/2)*cos(c/2)
After factorization, we'll have:
sin a+sin b+sin c=2cos c/2*[cos(a-b)/2+sin(c/2)]
But sin c/2=cos(pi/2 - c/2)
sin a+sin b+sin c=2cos c/2*[cos(a-b)/2+cos(pi/2 - c/2)]
[cos(a-b)/2+cos(pi/2 - c/2)]=
=2cos(a-b+pi-c)/4*cos(a-b-pi+c)/4
But a+b=pi-c
2cos(a-b+pi-c)/4*cos(a-b-pi+c)/4=
=2cos(a-b+a+b)/4*cos(a-b-a-b)/4=2cos(a/2)*cos(b/2)
So, sin a+sin b+sin c=2cos c/2*2*cos(a/2)*cos(b/2)
sin a+sin b+sin c=4*cos(a/2)*cos(b/2)*cos (c/2)