If A + B + C = 2 S, then sin (S - A) + sin (S - B) + sin (S - C) - sin S =
4 sin . sin . sin
Given expression
Sin (S - A) + sin (S - B) + sin (S - C) - sin S
Using sin C + sin D formula using sin C - sin D formula
2 sin (S−A+S−B)2 . cos (S−A−S+B)2 + 2 cos (S−C+S)2 . sin (S−C−S)2
= 2 sin (2S−A−B)2 . cos (−A+B)2 + 2 cos (2S−C)2 . sin (−C)2
Substituting 2S = A + B + C
= 2 sin ((A+B+C−A−B)2) . cos ((−A+B)2) + 2 cos ((A+B+C−C)2) {−sinC2}
= 2 sin C2 . cos (B−A2) - 2 cos (A+B2) . sin C2
= 2 sin C2 [cos(B−A2)−cos(A+B2)]
Using cos C - cos D formula
=2sinC2[2sin(B−A2+A+B2)2.sin((A+B2−(B−A2))2]
= 2 sin C2 [2 sin B2 . sinA2]
= 4 sin A2 . sin B2 . sin C2