If (a+b+c=25) and (ab+bc+ca=59)
Find the value of
(a2+b2+c2)
507
According to the question,
a+b+c=25
Squaring both the sides, we get
(a+b+c)2=252)
a2+b2+c2+2ab+2bc+2ca=625
a2+b2+c2+2(ab+bc+ca)=625
a2+b2+c2+2×59=625 [Given, ab+bc+ca=59]
a2+b2+c2+118=625
(a2+b2+c2+118)–118=625–118 [subtracting 118 from both the sides]
∴a2+b2+c2=507