If A+B+C=270°, then cos2A+cos2B+cos2C+4sin(A)sin(B)sin(C)=?
0
1
2
3
Explanation for correct option:
Step1. Finding value for cos2A+cos2B+cos2C+4sin(A)sin(B)sin(C):
Given that,
A+B+C=270°
Now
A+B+C=270°......(i)cos2A+cos2B+cos2C+4sin(A)sin(B)sin(C)=2cos(A+B)cos(A–B)+cos2C+4sin(A)sin(B)sin(C)=2cos(270°–C)cos(A–B)+cos2C+4sin(A)sin(B)sin(C)
Step2. Using the formula cos2x=1-2sin2x:
–2sinCcos(A–B)+1–2sin2C+4sinAsinBsinC=1–2sinC[cos(A–B)+sinC]+4sinAsinBsinC=1–2sinC[cos(A–B)+sin(270°–(A+B))]+4sinAsinBsinC=1–2sinC[cos(A–B)–cos(A+B)]+4sinAsinBsinC=1–2sinC[2sinAsinB]+4sinAsinBsinC=1–4sinAsinBsinC+4sinAsinBsinC=1
Hence, correct option is (B).