wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A+B+C=2S, show that cos2S+cos2(SA)+cos2(SB)+cos2(SC)=2+2cosAcosBcosC.

Open in App
Solution

Change in terms of double angles, i.e.,
cos2A=12(1+cos2A)
Also A=B+C=2S
L.H.S. =12[1+cos2S+1+cos(2S2A)+1+cos(2S2B)+1+cos(2S2C)].
=2+12[2cos(2SA)cosA+2cos(2SBC)cos(BC)]
=2+cosA[cos(B+C)+cos(BC)],2SA=B+C
=2+cosA(2cosBcosC)
=2+2cosAcosBcosC.
Alternative:
L.H.S.=1sin2S+1sin2(SA)+cos2(SB)+cos2(SC)
=2+[cos2(SB)sin2]+[cos2(SC)sin2(SA)]
Now apply
cos2Asin2B=cos(A+B)cos(AB) etc.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon