Change in terms of double angles, i.e.,
cos2A=12(1+cos2A)
Also A=B+C=2S
L.H.S. =12[1+cos2S+1+cos(2S−2A)+1+cos(2S−2B)+1+cos(2S−2C)].
=2+12[2cos(2S−A)cosA+2cos(2S−B−C)cos(B−C)]
=2+cosA[cos(B+C)+cos(B−C)],∵2S−A=B+C
=2+cosA(2cosBcosC)
=2+2cosAcosBcosC.
Alternative:
∴L.H.S.=1−sin2S+1−sin2(S−A)+cos2(S−B)+cos2(S−C)
=2+[cos2(S−B)−sin2]+[cos2(S−C)−sin2(S−A)]
Now apply
cos2A−sin2B=cos(A+B)cos(A−B) etc.