wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A+B+C=2S, then prove that
cos(SA)+cos(SB)+cos(SC)+cosS=4cosA2cosB2cosC2

Open in App
Solution

A+B+C=25 (Given)
Also, A+B+C=π (Sum of angles of triangle)
L.H.S cos(sA)+cos(sB)+cos(sC)cos(90°A)+cos(90°B)+cos(90°C)sinA+sinB+sinC
2sin(A+B2)cos(AB2)+sinC
[sinA+sinB=2sin(A+B2)cos(AB2)]
2cosC2cos(AB2)+2sinC2cosC22cosC2[cos(AB2)+cos(A+B2)]
[sinC2=cos(A+B2)]
2cosC2×2cos(A2)cos(B2)4cos(A2)cos(B2)cos(C2)
L.H.S=R.H.S
Hence, Proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression - Sum of n Terms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon