If a+b+c=5 and ab+bc+ca=10, then a3+b3+c3−3abc is equal to
A
−25
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
25
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−20
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−15
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A−25 (a+b+c)3=[(a+b)+c]3=(a+b)3+3(a+b)2c+3(a+b)c2+c3 =>(a+b+c)3=(a3+3a2b+3ab2+b3)+3(a2+2ab+b2)c+3(a+b)c2+c3 =>(a+b+c)3=a3+b3+c3+3a2b+3a2c+3ab2+3b2c+3ac2+3bc2+6abc =>(a+b+c)3=(a3+b3+c3)+(3a2b+3a2c+3abc)+(3ab2+3b2c+3abc)+(3ac2+3bc2+3abc)−3abc =>(a+b+c)3=(a3+b3+c3)+3a(ab+ac+bc)+3b(ab+bc+ac)+3c(ac+bc+ab)−3abc =>(a+b+c)3=(a3+b3+c3)+3(a+b+c)(ab+ac+bc)−3abc =>(a+b+c)3=(a3+b3+c3)+3[(a+b+c)(ab+ac+bc)−3abc] Putting the value given in the question we get, (5)3=(a3+b3+c3)+3(5)(10)−3abc =>(a3+b3+c3)−3abc=(5)3−3(5)(10) =>(a3+b3+c3)−3abc=125−150 =>(a3+b3+c3)−3abc=−25