We have,
a+b+c=5
ab+bc+ca=10
Since,
(a+b+c)2=25
a2+b2+c2+2(ab+bc+ca)=25
a2+b2+c2+2×10=25
a2+b2+c2=5
We know that,
a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−(ab+bc+ca))
a3+b3+c3−3abc=(5)×(5−10)
a3+b3+c3−3abc=5×−5
a3+b3+c3−3abc=−25
Hence, proved.