wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a + b + c = 5 and ab + bc + ca = 10, then prove that a3+b3+c33abc=25.

Open in App
Solution

To prove, a3+b3+c33abc=25,
Given,
a+b+c=5, ab+bc+ca=10
(a+b+c)2=a2+b2+c2+2(ab+bc+ca)
(5)2=a2+b2+c2+2(10)
25=a2+b2+c2+20
a2+b2+c2=2520
a2+b2+c2=5
LHS=a3+b3+c33abc
=(a+b+c)(a2+b2+c2abbcca)
=(5)[5(ab+bc+ca)]
=5(510)=5(5)=25=RHS
Hence proved.

flag
Suggest Corrections
thumbs-up
6
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
x^3 + y^3 + z^3 - 3xyz
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon