wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

if a+b+c=6 , a2+b2+c2=14 and a3+b3+c3=36 then find the value of (abc) ?

Open in App
Solution

(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)
(6)2=14+2(ab+bc+ca)
36-14=2(ab+bc+ca)
22/2=ab+bc+ca
ab+bc+ca=11

a^3+b^3+c^3-3abc
=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
=(6)(14-11)
=(6)(3)
=18

Since, a^3+b^3+c^3-3abc=18
36-3abc=18
-3abc=18-36
-3abc=-18
abc=6

flag
Suggest Corrections
thumbs-up
45
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Polynomials in One Variable
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon