if a+b+c=6 and 1a+1b+1c=32, then find ab+ac+ba+bc+ca+cb
We have,
a+b+c=6......(1)
1a+1b+1c=32.......(2)
On multiplying (1) and ( 2) and to and we get,
(a+b+c)(1a+1b+1c)=6×32
⇒(aa+ba+ca+ab+bb+cb+ac+bc+cc)=9
⇒(1+1+1+ba+ca+ab+cb+ac+bc)=9
⇒ba+ca+ab+cb+ac+bc=9−3
⇒ba+ca+ab+cb+ac+bc=6
⇒ab+ac+ba+bc+ca+cb=6
Hence,
this is the answer.