If a+b+c=7 and ab+bc+ca=20 find the value of a2+b2+c2
Given: a+b+c=7 and ab+bc+ca=20
Using the formula, (a+b+c)2=a2+b2+c2+2ab+2bc+2ac
⇒(a+b+c)²−2ab−2bc−2ac=a2+b2+c2
⇒(7)2−2(ab+bc+ac)=a2+b2+c2
⇒49−2(20)=a2+b2+c2
∴a2+b2+c2=9