Since (a+b+c)2=a2+b2+c2+2ab+2bc+2ca
(a+b+c)2=a2+b2+c2+2(ab+bc+ca)
a+b+c=8 and ab+bc+ca=20,
(8)2=a2+b2+c2+2×(20)
⇒64=a2+b2+c2+40
∴a2+b2+c2=64−40=24
We know that
a3+b3+c3−3abc
=(a+b+c){a2+b2+c2−(ab+bc+ca)}
∴a3+b3+c3−3abc
=8×(24−20)=4×8=32
[∵a+b+c=8,ab+bc+ca=20 and a2+b2+c2=24]
Thus, a3+b3+c3−3abc=32