If a + b + c = 8 and ab + bc + ca = 20, find the value of a3+b3+c3–3abc.
32
Since (a+b+c)2=a2+b2+c2+2(ab+bc+ca)
a+b+c=8 and ab+bc+ca=20
(8)2=a2+b2+c2+2×20
64=a2+b2+c2+40
a2+b2+c2=24
We now use the following identity:
a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−(ab+bc+ca))
a3+b3+c3−3abc=8×(24−20)=4×8=32
Thus, a3+b3+c3−3abc=32