Given,
a+b+c=9, and a2+b2+c2=35,
Using Identity,
(a+b+c)2=a2+b2+c2+2ab+2bc+2ac
∴a2+b2+c2=(a+b+c)2−2(ab+bc+ac)
2ab+2bc+2ac=92−35
∴ab+bc+ac=23
Again , Using Identity,
a3+b3+c3−3abc
=(a+b+c)(a2+b2+c2−ab−bc−ac)
=(a+b+c)(a2+b2+c2−(ab+bc+ac))
a3+b3+c3−3abc=(9)(35−23)
a3+b3+c3−3abc=(9)(12)
∴a3+b3+c3−3abc=108