wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a+b+c=9, and a2+b2+c2=35, find thevalue of a3+b3+c33abc.


Open in App
Solution

Given,

a+b+c=9, and a2+b2+c2=35,

Using Identity,

(a+b+c)2=a2+b2+c2+2ab+2bc+2ac

a2+b2+c2=(a+b+c)22(ab+bc+ac)

2ab+2bc+2ac=9235

ab+bc+ac=23

Again , Using Identity,

a3+b3+c33abc

=(a+b+c)(a2+b2+c2abbcac)

=(a+b+c)(a2+b2+c2(ab+bc+ac))

a3+b3+c33abc=(9)(3523)

a3+b3+c33abc=(9)(12)

a3+b3+c33abc=108

flag
Suggest Corrections
thumbs-up
92
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon