wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a+b+c=9, and ab+bc+ac=23, then a3+b3+c33abc=

Open in App
Solution

Given: a+b+c=9 and ab+bc+ac=23
As, a+b+c=9
Squaring on both sides, we get
(a+b+c)2=92
a2+b2+c2+2ab+2bc+2ac=81
a2+b2+c2+2(ab+bc+ac)=81
a2+b2+c2+2(23)=81
a2+b2+c2+46=81
a2+b2+c2=8146
a2+b2+c2=35(1)
Using identity ,
a3+b3+c33abc
=(a+b+c)[a2+b2+c2(ab+bc+ac)]
a3+b3+c33abc=9(3523)
=108

Hence, (a) is the correct option.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon