Given: a+b+c=9 and ab+bc+ac=23
As, a+b+c=9
Squaring on both sides, we get
(a+b+c)2=92
a2+b2+c2+2ab+2bc+2ac=81
a2+b2+c2+2(ab+bc+ac)=81
a2+b2+c2+2(23)=81
a2+b2+c2+46=81
a2+b2+c2=81−46
a2+b2+c2=35…(1)
Using identity ,
a3+b3+c3−3abc
=(a+b+c)[a2+b2+c2−(ab+bc+ac)]
∴a3+b3+c3−3abc=9(35−23)
=108
Hence, (a) is the correct option.