If a+b+c=9 and ab+bc+ac=26 find the value of a3+b3+c3−3abc
We have a+b+c=9 ............(i)
⇒(a+b+c)2=81 [On squaring both sides of (i)]
⇒a2+b2+c2+2(ab+bc+ac)=81
⇒a2+b2+c2+2×26=81 [∵ab+bc+ac=26]....(ii)
⇒a2+b2+c2=(81−52)⇒a2+b2+c2=29...(iii)
Now we have
a3+b3+c3−3abc
=(a+b+c)(a2+b2+c2−ab−bc−ac)
=(a+b+c)[(a2+b2+c2)−(ab+bc+ac)] [From (i), (ii), and (iii)]
=9×[(29−26)]
=(9×3)=27
Hence, a3+b3+c3−3abc=7