If a + b + c = 9 and ab + bc + ca = 26, find the value of a3+b3+c3−3abc.
a + b + c = 9, ab + bc + ca = 26
Squaring, we get
(a+b+c)2=(9)2a2+b2+c2+2(ab+bc+ca)=81⇒ a2+b2+c2+2×26=81⇒ a2+b2+c2+52=81∴ a2+b2+c2=81−52=29Now, a3+b3+c3−3abc=(a+b+c)[(a2+b2+c2−(ab+bc+ca))]=9[29−26]=9×3=27