The correct option is C 26
Given:
a+b+c=9ab+bc+ca=26
Squaring on both sides of a+b+c=9, we get
(a+b+c)2=81
We know that, (a+b+c)2=a2+b2+c2+2(ab+bc+ca)]
81=a2+b2+c2+2(ab+bc+ca)
Substituting the value of ab+bc+ca=26 in the above expression,
81=a2+b2+c2+2(26)
=81–52=a2+b2+c2=29
a2+b2+c2−3=29−3=26