The correct option is A 27
a+b+c=9
Squaring on both sides
(a+b+c)2=81
a2+b2+c2+2ab+2bc+2ca=81
a2+b2+c2+2(ab+bc+ca)=81
a2+b2+c2+2(26)=81
a2+b2+c2=81–52=29
Now, a3+b3+c3−3abc
=(a+b+c)(a2+b2+c2–ab–bc−ca)
=(a+b+c)((a2+b2+c2)−(ab+bc+ca))
=(9)(29–26)
=9×3=27