a+b+c=9 ...Given
Squaring on both sides
(a=b+c)2=81
a2+b2+c2+2ab+2bc+2ca=81
a2+b2+c2+2(ab+bc+ca)=81
a2+b2+c2+2(26)=81
a2+b2+c2=81−52=29
a3+b3+c3−3abc
=(a+b+c)(a2+b2+c2−ab−bc−ca)
=(a+b+c)[(a2+b2+c2)−(ab+bcca)]
=(9)(29−26)
=9×3=27
If a + b + c = 9 and ab + bc + ca = 23, then a3+b3+c3−3abc=