If a+b+c=9 and ab+bc+ca=40. Find the value of a2+b2+c2.
Given, a+b+c=9
and ab+bc+ca=40
We know that,
(a+b+c)2=a2+b2+c2+2ab+2bc+2ca
⇒a2+b2+c2=(a+b+c)2–2(ab+bc+ca)
⇒a2+b2+c2=(9)2−2×40=81–80=1
[∵a+b+c=9 and ab+bc+ca=40]
Thus, the value of a2+b2+c2 is 1.